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a b s t r a c t

The paper concerns the effect of particle inertia on acceleration statistics. A simple analytical model for
predicting the acceleration of heavy particles suspended in an isotropic homogeneous turbulent flow
field is developed. This model is capable of describing the influence of both Stokes and Reynolds numbers
on the particle acceleration variance. Comparisons of model predictions with numerical simulations are
presented.
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1. Introduction

Transport and dispersion of small heavy particles in turbulent
fluid occur in many natural and industrial processes. Due to the
practical and theoretical importance of the problem, numerous
works have been devoted to investigating the velocity and dis-
placement statistics of heavy inertial particles dispersed in isotro-
pic homogeneous turbulence (e.g., see Reeks, 1977; Pismen and
Nir, 1978; Squires and Eaton, 1991; Elghobashi and Truesdell,
1992; Wang and Stock, 1993; Pozorski and Minier, 1998; Mash-
ayek, 1999; Derevich, 2001). At the same time, a much lesser atten-
tion has been paid to the acceleration statistics of heavy particles
in turbulent flow. Recently, this gap in knowledge has been filled
by Bec et al. (2006). In this paper, a detailed direct numerical sim-
ulation of the behaviour of particle acceleration at varying both
Stokes and Reynolds numbers was performed.

The present paper is focused on deriving an analytical model for
predicting the effect of particle inertia on the acceleration variance
and autocorrelation function. Hereafter the particles are consid-
ered as heavy if their material density is much large than that of
the fluid. Moreover, the particle size is assumed to be much less
as compared to the Kolmogorov length microscale.

2. Velocity correlations

Before proceeding to acceleration statistics, we will define veloc-
ity correlations. In an isotropic homogeneous stationary turbulent
ll rights reserved.
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flow field, the Lagrangian fluctuating velocity correlations are de-
fined as

BLijðsÞ ¼ hu0iðx; tÞu0jðRðt � sÞ; t � sÞjRðtÞ ¼ xi ¼ u02WLðsÞdij; ð1Þ

where R is the position vector of a fluid element along its path,
u02 � hu0ku0ki=3 is the intensity of fluid velocity fluctuations, and
WL(s) is the Lagrangian autocorrelation function. Hence and hence-
forth the angle brackets symbolize averaging over the ensemble of
samples of a random fluid velocity field. The most widespread
dependence for approximating WL(s) is the exponential function

WLðsÞ ¼ expð�sT�1
L Þ ð2Þ

with TL �
R1

0 WLðsÞds being the Lagrangian integral timescale. As is
clear, (2) contains the sole timescale TL which is a measure of the
large-scale energy-containing eddies. Nonetheless, the function
(2) describes experimental data and DNS results reasonably well
(except for the region of small values of s) when using an appropri-
ate dependence of TL on Reynolds number. In the vicinity of s = 0,
the behaviour of (2) is incorrect since W0Lð0Þ 6¼ 0.

The Lagrangian fluid velocity correlations measured along hea-
vy particle trajectories (seen by particles) are defined as

BLpijðsÞ ¼ hu0iðx; tÞu0jðRpðt � sÞ; t � sÞjRpðtÞ ¼ xi ¼ u02WLpijðsÞ; ð3Þ

where Rp is the particle position vector, and WLpij (s) is the fluid
velocity autocorrelation tensorial function seen by particles. It is
worth emphasizing that, due to the so-called crossing-trajectories
effect induced by the mean velocity drift between the particulate
and fluid phases (Csanady, 1963), the fluid velocity correlations
seen by particles may be anisotropic even in isotropic turbulence.
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Thus, the Lagrangian fluid velocity correlations seen by particles (3)
are characterized by the autocorrelation tensor WLpij(s) as
contrasted to the Lagrangian correlations measured along fluid ele-
ment trajectories (1), which are quantified by the scalar autocorre-
lation function WL(s).

When using matrix notation, WLpij(s) can be also approximated
by the exponential function

WLpðsÞ ¼ expð�sT�1
Lp Þ ð4Þ

with TLpij �
R1

0 WLpijðsÞds being the Lagrangian fluid velocity
timescale tensor seen by particles. This timescale tensor should take
into consideration the inertia, crossing-trajectories, and continuity
effects (Reeks, 1977; Wang and Stock, 1993). In the absence of
the crossing-trajectories effect, TLpij becomes isotropic, that is,
TLpij = TLp dij. This effect may be neglected when the mean velocity
drift, which is caused for example by gravity, is small as compared
with the fluid fluctuating velocity (i.e., spg� u0, where sp is the par-
ticle response time, and g is the gravity acceleration). Even if the
crossing-trajectories effect is negligible, the eddy-particle interac-
tion timescale, TLp, coincides with the Lagrangian fluid turbulence
timescale, TL, only in the limit of zero-inertia particles, when the dy-
namic behaviour of particles is equivalent to the motion of fluid ele-
ments. For heavy particles, TLp may differ from TL and, depending on
particle inertia and turbulence structure parameters, TLp/TL can be
considerably greater than unity (Oesterlé and Zaichik, 2006).

The Lagrangian particle velocity correlations are written as

BpijðsÞ ¼ hv0iðx; tÞv0jðRpðt � sÞ; t � sÞjRpðtÞ ¼ xi ¼ hv0iv0kiWpkjðsÞ; ð5Þ

where hv0iv0ji is the particulate stress tensor, and Wpij(s) is the particle
fluctuating velocity autocorrelation tensor. In should be noted that,
due to the crossing-trajectories effect, both hv0iv0ji and Wpij(s) may be
anisotropic even in isotropic turbulence.

The motion of a heavy particle is governed by the equation

dvp

dt
¼ uðRp; tÞ � vp

sp
þ F; ð6Þ

where u(Rp, t) is the velocity of the carrier fluid at a point x = Rp(t),
and F is a body force acting on a particle (e.g., gravity).

Eq. (6) produces the following equation for the particle velocity
correlations (5):

d2Bpij

ds2 �
Bpij

s2
p
¼ � BLpij

s2
p
: ð7Þ

By making use of matrix notation, the solution of (7) that satis-
fies the boundary conditions

dBpij

ds
¼ 0 for s ¼ 0; Bpij ! 0 for s!1

is given by

BpðsÞ ¼
u02

2sp

Z 1

0
exp �jsþ nj

sp
I

� �
þ exp �js� nj

sp
I

� �� �
WLpðnÞdn ð8Þ

with I being the unit matrix. Expression (8) was first obtained by
Reeks (1977) immediately by integrating the particle motion Eq.
(6). In accordance with Eq. (8), the kinetic particulate stresses are
determined as

hv0iv0ji ¼ Bpijð0Þ ¼ u02fuij: ð9Þ

The quantity

fu �
1
sp

Z 1

0
WLpðsÞ exp � s

sp
I

� �
ds ð10Þ

measures a response of particles to velocity fluctuations of the car-
rier turbulent fluid, i.e., a coupling between the particulate and fluid
phases.
If the Lagrangian autocorrelation function seen by particles is
described by the exponential approximation (4), the particle veloc-
ity correlation tensor (8) takes the form

BpðsÞ ¼
u02

2
ðIþ spT�1

Lp Þ
�1 expð�sT�1

Lp Þ þ exp � s
sp

I
� �� ��

þðI� spT�1
Lp Þ

�1 expð�sT�1
Lp Þ � exp � s

sp
I

� �� ��
; ð11Þ

and the particle response tensor (10) becomes equal to

fu ¼ ðIþ spT�1
Lp Þ

�1
: ð12Þ

In the absence of the mean velocity drift between the particu-
late and fluid phases, the velocity correlation and response tensors
become isotropic

BpijðsÞ ¼ BpðsÞdij;BpðsÞ ¼
u02

2sp

Z 1

0
exp � jsþ nj

sp

� ��

þ exp � js� nj
sp

� ��
WLpðnÞdn; ð13Þ

fuij ¼ fudij; fu ¼
1
sp

Z 1

0
WLpðsÞ exp � s

sp

� �
ds: ð14Þ

It is evident that, in this case, the particle velocity autocorrela-
tions and kinetic stresses would be also isotropic

WpijðsÞ ¼ WpðsÞdij;WpðsÞ ¼
1

2spfu

Z 1

0
exp � jsþ nj

sp

� ��

þ exp � js� nj
sp

� ��
WLpðnÞdn; ð15Þ

hv0iv0ji ¼ v02dij; v02 ¼ fuu02; ð16Þ

where v02 � hv0kv0ki=3 is the intensity of the particle velocity
fluctuations.

When using the exponential approximation of the fluid velocity
autocorrelation function seen by particles

WLpðsÞ ¼ expð�sT�1
Lp Þ; ð17Þ

the response coefficient (14) and the autocorrelation function (15)
simplify to

fu ¼
TLp

sp þ TLp
; ð18Þ

WpðsÞ ¼
1
2

exp � s
TLp

� �
þ exp � s

sp

� �� �

þ ðTLp þ spÞ
2ðTLp � spÞ

exp � s
TLp

� �
� exp � s

sp

� �� �
: ð19Þ

The relation (18) that quantifies the particle-to-fluid velocity
variance ratio was first derived by Chen (Hinze, 1975) who as-
sumed TLp = TL. It is well known that (18) is able to properly de-
scribe v02/u02 if TLp as a function of both Reynolds and Stokes
numbers is taken into account as well as the vicinity of small par-
ticle inertia sp is excluded from consideration. At small values of sp,
the behaviour of fu is governed by the Taylor differential timescale
rather than the Lagrangian integral one (Zaichik et al., 2003). To re-
fine the behaviour of fu at small values of sp, the two-scale bi-expo-
nential approximation of the autocorrelation function proposed by
Sawford (1991) can be applied

WLpðsÞ ¼
1

2R
ð1þRÞ exp � s

Tþ

� �
� ð1�RÞ exp � s

T�

� �� �
; ð20Þ

R ¼ ð1� 2z2Þ1=2
; z ¼ sT

TLp
; Tþ ¼

ð1þRÞTLp

2
; T� ¼

ð1�RÞTLp

2
:

In (20), the influence of particle inertia is included only in the
Lagrangian integral timescale, TLp, whereas the Taylor differential
timescale, sT, is given by the convectional relation that does not al-
low for the inertia effect
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sT ¼ � 2
W00Lð0Þ

� �1=2

¼ 2Rek

151=2a0

� �1=2

sk: ð21Þ

Here Rek�(15u
04/em)1/2 is the Reynolds number based on the Taylor

length microscale, and sk �(m/e)1/2 is the Kolmogorov time micro-
scale, where e is the turbulence dissipation rate and m is the kine-
matic viscosity of the fluid. The quantity a0 in (21) denotes the
normalized magnitude of fluid acceleration fluctuations, and, due
to intermittency, it is dependent on the Reynolds number (e.g.,
see Voth et al., 2002; Hill, 2002; Yeung et al., 2006). This Reynolds
number dependence can be approximated as (Zaichik et al., 2003)

a0 ¼
a01 þ a01Rek

a02 þ Rek
; a01 ¼ 11; a02 ¼ 205; a01 ¼ 7: ð22Þ

The autocorrelation function (20) produces the following for-
mulas for the response coefficient (14) and the autocorrelation
function (15):

fu ¼
2sp þ z2TLp
� 	

TLp

2s2
p þ 2spTLp þ z2T2

Lp

; ð23Þ

WpðsÞ ¼
1

4Rfu

ð1þRÞTþ
sp þ Tþ

exp � s
Tþ

� �
þ exp � s

sp

� �� ��

þ ð1þRÞTþ
Tþ � sp

exp � s
Tþ

� �
� exp � s

sp

� �� �

�ð1�RÞT�
sp þ T�

exp � s
T�

� �
þ exp � s

sp

� �� �

�ð1�RÞT�
T� � sp

exp � s
T�

� �
� exp � s

sp

� �� ��
: ð24Þ

It is clear that, as Rek increases, z ? 0, and hence, Eqs. (23) and (24)
reduce, respectively, to Eqs. (18) and (19).

In Fig. 1, we present the comparison of the particle velocity
autocorrelation functions (19) and (24) with DNS by Simonin
et al. (2002) for various Stokes numbers at Rek = 53. The Stokes
number is defined as StE = sp/TE with TE being the Eulerian integral
timescale. The timescales TLp and TE are determined by means of
the following approximations (Oesterlé and Zaichik, 2006):

TLp ¼ TL þ ðTE � TLÞ
StE

1þ StE
� 0:9mSt2

E

ð1þ StEÞ2ð2þ StEÞ

" #
;

TE ¼
3ð1þmÞ2

3þ 2m
TL; ð25Þ

where m � TEu0/L is the turbulence structure parameter, and L is the
length macroscale. The structure parameter is taken as 0.3 that,
according to (25), gives TL/TE = 0.71 what is close to the value of
pΨ
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Fig. 1. The particle velocity autocorrelation function: I – (19); II – (24); 6–10 –
Simonin et al. (2002); 1, 6 – StE = 0.04; 2, 7 – StE = 0.2; 3, 8 – StE = 1.0; 4, 9 – StE = 2.3;
5, 10 – StE = 3.3.
0.68 obtained in Simonin et al. (2002). The Taylor timescale appear-
ing in (24) is determined by (21) and (22).

As is seen from Fig. 1, the particle velocity autocorrelation func-
tion (19), which is relied on the exponential approximation (17), is
in good agreement with the DNS results, and this is hardly distin-
guishable from the autocorrelation (24) based on the bi-exponen-
tial approximation (20). The most remarkable conclusion that can
be drown from Fig. 1 consists in growing the Lagrangian timescale
of particle velocity fluctuations with increasing particle inertia.
3. Acceleration correlations

In isotropic turbulence, the Lagrangian fluid acceleration corre-
lations are defined by the relation

ALijðsÞ ¼ ha0iðx; tÞa0jðRðt � sÞ; t � sÞjRðtÞ ¼ xi ¼ a02WAðsÞdij ð26Þ

with a02 � ha0ka0ki=3 being the variance of fluid acceleration fluctua-
tions, and WA (s) being the acceleration autocorrelation function.

In view of the kinematic relation ALij = � d2BLij/ds2 and (1), (26)
can be rewritten as

ALijðsÞ ¼ �u02W00LðsÞdij; a02 ¼ 2u02

s2
T

¼ a0e3=2

m1=2 ; WAðsÞ ¼
W00LðsÞ
W00Lð0Þ

¼ � s2
TW
00
LðsÞ

2
: ð27Þ

The Lagrangian correlations of particle acceleration fluctuations are
given by

ApijðsÞ ¼ ha0pia
0
pjjRpðtÞ ¼ xi ¼ ha0pia

0
pkiWApkjðsÞ:

From the kinematic relation Apij = �d2Bpij/ds2 and Eq. (7), it is fol-
lows that

ApijðsÞ ¼
BLpijðsÞ � BpijðsÞ

s2
p

¼ u02WLpijðsÞ � hv0iv0kiWpkjðsÞ
s2

p
: ð28Þ

Expression (28) along with (9) yields the following relations for
the particle acceleration variances and autocorrelations:

ha0pia
0
pji ¼

u02

s2
p
ðdij � fuijÞ; ð29Þ

WApijðsÞ ¼ ðdik � fuikÞ�1½WLpkjðsÞ � fuknWpnjðsÞ�: ð30Þ

With no the mean drift between the particulate and fluid
phases, the acceleration variances (29) and autocorrelations (30)
become isotropic

ha0pia
0
pji ¼

ap0e3=2

m1=2 dij; ap0 ¼
ð1� fuÞRek

151=2St2 ; ð31Þ

WApijðsÞ ¼ WApðsÞdij; WApðsÞ ¼ ð1� fuÞ�1½WLpðsÞ � fuWpðsÞ�; ð32Þ

where St � sp/sk is the Stokes number determined by the Kolmogo-
rov timescale.

In what follows, we consider the acceleration statistics of low-
inertia heavy particles, the deviation of trajectories of which from
those of the fluid elements may be neglected. In this case, we thus
can take TLp = TL. Then substituting (23) along with (21) into (31)
yields

ap0 ¼ a0 1þ 151=2a0StðSt þ TLÞ
Rek

" #�1

; ð33Þ

where the Lagrangian integral timescale is determined as (Zaichik
et al., 2003)

TL ¼
TL

sk
¼ 2ðRek þ C1Þ

151=2C01
; C01 ¼ 7; C1 ¼ 32:

Substituting (18) into (31), one can obtain
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ap0 ¼
Rek

151=2a0StðSt þ TLÞ
: ð34Þ

When this relation is compared with (33), it is apparent that (34)
obtained when using the single exponential approximation of the
Lagrangian fluid velocity autocorrelation function is valid only for
high-inertia particles (St� 1) and it breaks down at small Stokes
numbers.

In the limit of high Reynolds numbers (Rek ?1), (33) reduces
to

ap0 ¼ a0 1þ 2a01St
C01

� ��1

: ð35Þ

It is clear from (35) that, in accordance with the classical Kolmogo-
rov similarity hypothesis for small-scale turbulence when neglect-
ing flow intermittency, the effect of Reynolds number on particle
acceleration statistics is eliminated.

Fig. 2 shows the normalized particle acceleration magnitude as
a function of the Stokes number for three different Reynolds num-
bers. Predictions based on (33) are compared with DNS by Bec et al.
(2006) for the normalized acceleration variance of heavy particles
immersed in homogeneous, isotropic, and stationary turbulence
with no gravity. Bec et al. (2006) performed a systematic study
of particle acceleration statistics in the range of the Stokes number,
St, from 0.16 to 3.5 for three values of the Reynolds number, Rek. It
is clear that, at St = 0, the acceleration of heavy particles coincides
with that of the fluid. However, the acceleration variance of heavy
particles drops very fast with their inertia. As is seen, (33) de-
scribes reasonably well the influence of both St and Rek on ap0,
especially at Rek = 65. Distinctions between the predictions and
the simulations at higher Reynolds numbers are explained by
neglecting the effect of particle preferential concentration. As
was shown in Bec et al. (2006), there are two mechanisms that
are responsible for a reduction in acceleration fluctuations with
increasing particle inertia: (i) the filtering of fluid velocity differ-
ences due to particle inertia and (ii) the local accumulation (pref-
erential concentration) of heavy particles in low-vorticity regions.
Because the model presented allows for only the former of these
two effects, this leads to an overestimation of the particle acceler-
ation magnitude at small Stokes and high Reynolds numbers when
the role of preferential concentration is of particular importance. It
is also obvious that, since the acceleration of particles is mainly
governed by small-scale turbulent structures, it is sense to quantify
the particle inertia in terms of the response time normalized by the
Kolmogorov timescale as distinct from the effect of particle inertia
on velocity statistics, which is better characterized by the turbu-
lence time macroscale. As a result of such the circumstance, it
should be mentioned that inserting the response coefficient (18)
into (31) instead of (23) leads at small values of St to an unaccept-
able behaviour of ap0 even in a qualitative sense. It is seen from
Fig. 2 that the curves relating to (34) deviate more and more from
those regarding (33) as the Stokes number decreases. Thus, to de-
scribe the particle acceleration we need using the two-exponential
autocorrelation function of the fluid velocity seen by particles,
whereas to predict the particle velocity statistics it is sufficient to
use the one-exponential autocorrelation approximation of the fluid
velocity seen.

In closing make a remark about the role of flow intermittency
on the Reynolds number dependence ap0(Rek). As is clear from
(33), this dependence arises mainly from the intermittent correc-
tion to the normalized fluid acceleration magnitude a0(Rek). Thus,
expression (33) supports the conclusion drown in Bec et al.
(2006) that the fluid intermittency is responsible of the depen-
dence of ap0 on Rek.
4. Summary

A simple analytical model for predicting the acceleration statis-
tics of heavy particles dispersed in isotropic homogeneous turbu-
lence is developed. This model takes into account the effect of
both Stokes and Reynolds numbers on the particle acceleration.
Comparison of model predictions with numerical simulations
shows a quite good agreement except for the values of the particle
acceleration magnitude at small Stokes and high Reynolds num-
bers. To improve the model, one has to take into consideration
the effect of particle preferential concentration.
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